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This paper will present the work done to analyze and dissect a common Denial-

of -Service attack, in order to broaden the understanding of the attack and to help 

find a defense mechanism for that attack. 

Most work has focused on the "SYN flood" attack in distributed configuration, 

and some other attacks have been analyzed for the sake of comparison. 
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C h a p t e r  1  

SCOPE, GOALS AND METHODOLOGY 

Denial of service attacks have been targeting computer systems for a long time 

now. Dealing with an individual flooder was relatively easy, but then the attackers 

have evolved the attack and the new "Distributed" denial of service attack (aka 

DDoS) has been devised. 

 

Goals and Scope 

Nowadays DDoS poses one of the main unresolved security threats in computer 

security.  

This work performs a thorough analysis of the DDoS mechanism, focusing on 

one of the more common attacks called the "SYN flood". The main goal of this 

work is to establish enough information and know-how about these attacks in 

order to provide a foundation for later work which will try to resolve a "cure" for 

these kinds of attacks. 
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Methodology 

The methodology consisted of several phases for understanding the phenomena 

of DDoS: 

1. Analyzing sniffer data of attacks on a host. 

2. Examining the common tools that are used to generate such attacks. 

3. Examine the Operating system source code that deals with common DDoS 

attacks. 

4. Perform performance analysis of an attacked host under several situations and 

load subjects. 

The output of these steps was then used to generate a profile of the attack and 

perform quantitative analysis on the raw data. The results of these are presented 

in this work. 
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Tools of the trade 

The tools used for simulating the attacks were the common denial of service tools 

used by crackers to attack websites on the Internet. 

1. “Tribal Flood Network 2000” (or simply TFN2K) 

2. ”Trinoo” 

3. “Stacheldraht V4” 

4. “synk4” 

In order to examine the network layer, we have used simple network packet 

sniffer utilities such as the native tcpdump in UNIX, as well as “Ethereal” for 

Linux in order to parse the sniff log. 

The web traffic used to test the web server capabilities, and simulate regular user 

traffic, was “Apache Benchmark” (or ab) which is a part of the Apache web 

server distribution. This tool enabled us to generate any number of concurrent 

requests over a specified amount of time. 

Our network configuration was very simple – single target hosts, connected to a 

network switch, and with other one or two attacking hosts connected to the same 

switch. Sniffers were installed on all hosts. 

  

server switch 
attackers



Distributed Denial of Service attacks analysis 6
 

C h a p t e r  2  

ANALYSIS OF THE SYN FLOOD ATTACK 

The SYN flood attack consists of sending SYN requests (i.e. TCP packets with 

the SYN flag up) that form the first part of the "Three way handshake" in TCP 

connection establishment. These packets are sent with the source IP spoofed (i.e. 

randomly generated - see fig. 1) so when the attacked host tries to continue the 

three way handshake, the destination is either unreachable or does not expect the 

"SYN-ACK" packet that is sent in response to the "SYN" request. Either way, 

the connection establishment will not succeed and the resource that the attacked 

host allocated for that connection will stay "busy". This causes the situation of 

resource shortage on the attacked host and no clients can connect to the host. 

This kind of attack is hard to trace because of the spoofed source IP's looks just 

like a regular client access, and trying to generalize the attack and identify it in the 

overall communications is impossible due to the fact that the source IP distribute 

equally over the whole IP address range. 
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Figure 1 - IP source range distribution 

 

This figure shows the distribution of the source IP addresses by analyzing the 
first octet of address (the class ‘A’ identifier in an IP address). It clearly shows 
that the distribution was indeed random for the address ranges are evenly 
distributed over all the octet range (255 values). 
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Server side 

The server under attack allocates resources to every SYN request in it TCP stack 

implementation. These resources are limited and bounded by a finite number. 

This number is OS dependent (and usually also depends on hardware settings) 

and in our case was 1024 places in every socket’s backlog. Therefore, altering the 

stack implementation by changing this upper bound is not efficient, for the 

amount of traffic that forms the attack will flood any amount of bounded 

resource in a matter of seconds (see fig. 2). 
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Figure 2 - SYN and SYN/ACK analysis under a 
SYN flood.  

This diagram shows the behavior of the attacked host, and the timeouts for 
retransmission and socket destruction. The server cannot handle the incoming 
flood of SYN requests, and as soon as some sockets are freed, a new SYN request 
captures it. 
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Regarding the SYN/ACK behavior observed in fig. 2, we have superimposed 

three sessions of similar attacks in order to verify the observed behavior (fig. 3). 

We can clearly see the first burst of packets which sums up to 1016 which is close 

enough to the 1024 limit mentioned before (some addresses were probably 

unreachable), then after 4 seconds of timeout (3 seconds in kernel), another burst 

of retransmits; 6 seconds later another burst which is the last retransmission 

(allowed after maximum of 5 seconds for last retransmit in kernel). Following 

that is a pause of 12 seconds after which a new burst of SYN/ACK arrives. The 

last delay is the time that the socket is destroyed after, if no ACK has been 

received (configured for 10 seconds in kernel). 

SYN/ACK behavior - three tests superimposed
(sessions have been padded at the beginning)
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Figure 3 - Three SYN/ACK session recordings 
superimposed 

We have superimposed the SYN/ACK behavior of three sessions by using the first 
peak as a correlation point, and padding the beginnings with 0’s (zeroes). This 
clearly shows that the behavior observed is consistent and is explained in the 
paragraph above. 
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C h a p t e r  3  

HANDLING SYN FLOOD USING LINUX "SYNCOOKIES" 

Trying to develop a solution that will handle flood situations as described before, 

resulted in a mechanism called "syncookies". This mechanism implements the 

following procedure instead of the regular behavior of a TCP three way 

handshake: 

♦ When a SYN request is received, a hash is calculated, using the 

main packet identifiers: source address and port, destination address 

and port, sequence number, the MSS, and a couple of secret 

numbers that the server knows about. Then, the TCP stack 

resources for that packet are immediately released. 

♦ After the packet information has been recorder (i.e. A "cookie" was 

generated), a SYN-ACK response is initiated using a new socket 

structure that does not conflict with the incoming sockets resource. 

This connection is initiated using the "cookie” previously recorded 

for the packet. This means that a brand new connection is 

established from the server point of view, and the connection 

information is regenerated from the cookie. 
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♦ When the server receives an ACK, it checks that the secret function 

works for a recent value of t (where t is a 32-bit time counter that 

increases every 64 seconds), and then rebuilds the SYN queue entry 

from the encoded MSS. 

As the SYN flood was described, it is simply a series of SYN packets from forged 

IP addresses. The IP addresses are chosen randomly and don't provide any hint 

of where the attacker is. The SYN flood keeps the server's SYN queue full. 

Normally this would force the server to drop connections. A server that uses 

SYN cookies, however, will continue operating normally. The biggest effect of 

the SYN flood is to disable large windows. 

As part of this research several simulations were done in effort to understand the 

attacks implication, such as the resistance of the server to the SYN attack 

scenario and the network response to different load. Some of the test included 

concurrent naïve users hoping that the server would allocate them some 

minimum essential connections and resources. Analyzing the performance 

degradation that this extra handling adds to the server leads to the following 

conclusions:  
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1. The server is working a bit harder. Analyzing the graph (fig. 4 - System 

CPU time) the first five seconds compare to server not running the 

syncookie mechanism, it seems the server reach a peek of 50 percent of 

usage and lasting till the end of the load with an average of 40 to 50 

percent. 
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Figure 4 - System space percent of CPU time 

This chart shows the use of CPU time in percent, by the system space process 
in our test host. The host is completely idle and the measurements show the 
computational load imposed by the different attack types. 
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2. The server networking behavior shows that the mechanism is extremely 

useful in eliminating the DoS situation (fig. 5). We can clearly see the 

impact of the syncookie mechanism as the network flow includes almost 

the same amount of SYN and SYN/ACK packets as opposed to the 

server that did not have syncookies, where the network is full of SYN 

packets, and once in a while (timeouts) a small bulk of SYN/ACKs are 

sent from the server. 

SYN and SYN/ACK behavior w ith and w ithout SynCookie
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Figure 5 - SYN and SYN/ACK behavior with/out 
syncookies 

This chart visualizes the network traffic under different host 
configurations – with normal operation, and with the syncookie 
mechanism enabled. 
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A question arises regarding the throughput of the syncookie-enabled 

scenario, for in regular traffic, the medium seems to be able to hold about 

4k-5k packets/second, where some situations in the syncookie scenario 

show very poor performance (about 2k packets/seconds), and other 

peaks show almost 8k packets/second. This behavior is clearly the result 

of collisions over the Ethernet medium. When the throughput is 

extremely high, many collisions occur, and both sides slow down 

abruptly, then there is a long phase of low throughput where the collision 

rate is high, which makes both sides try to send more packets per second, 

which causes another high throughput peak and collisions, and so on… 

3. Analyzing the time-sharing between the user space and system space 

processes (fig. 6), we can clearly see that a loaded web server, requires 

more system space processing (i.e. handling the network layer) than user 

space processing (i.e. serving web pages). This information, along with 

the analysis of the SYN attack implications on the attacked server (fig. 4), 

helps us understand why the attack is so effective. The SYN attack results 

in high system space usage, and as the number of current user is higher, 

the system load is higher.  
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Figure 6 – System space and user space CPU time 
sharing under web load 

 

4. Trying to use invalid TCP/IP packets (with wrong checksums) does not 

impose the network unavailability, but still puts the server under some 

pressure, as can be seen from the behavior under an attack using 0 (zero) 

checksum packets (fig. 4). 

Here, the web server performance was tested in order to get an idea of the 
impact that a DoS attack will have on legitimate users. As the load rises, more 
system space CPU time is required, because it seems that handling the low 
level networking load requires more attention than handling the web serving 
itself.  
The maximum number of concurrent users achieved on the test server was 
about 1800. 
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C h a p t e r  4  

COMPARISON TO OTHER ATTACKS - PERFORMANCE-WISE 

We have chosen to focus on the SYN flood attack, for some reasons. One of 

them (amongst with the rest mentioned before) is the fact that the SYN attack is 

considered to be the most effective in spending system resources. We have 

performed some measurements to quantify these assumptions and reached the 

following conclusions (see fig. 7): 

1. The SYN attack has the fastest impact on the attacked system. 

2. Only ICMP attacks can begin to measure up to the impact that SYN 

floods have on the system. 

3. UDP has some impact, although it was expected to be much more 

effective. 

4. Most modern operating system, are not affected anymore by mangling 

the IP packets themselves in order to invalidate the IP protocol or cause 

the system to work harder on strange packets. 
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System time under different attacks
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Figure 7 - System space percent of CPU time under 
different attacks 

Besides the SYN attack which has been explained before, hereby is an 

explanation of the other attack types used in our research:  

• UDP flood – sends spoofed UDP packets to the host, similar to the SYN 

flood, but the emphasis is on network flooding rather than resource 

exhaustion. 

• ICMP/PING flood – send spoofed ICMP-ECHO-REQUEST packets, 

which will cause the attacked server to try and respond to them. 
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• TARGA3 attack (IP stack penetration) – sends mangled packets with: 

invalid fragmentations, protocol, packet size, header value, offset, TCP 

options, TCP segments and routing flags. These are picked randomly. 

The target is to “penetrate” the IP stack – i.e. cause the attacked host to 

halt because of improper stack implementation. 

To be able to understand the real implications of the network flow, we must bear 

in mind that each attack has a different packet size, thus the load 

(packets/second) is different. The packet sizes are: 60 bytes for the UDP flood, 

60 bytes for the SYN flood, and 106 bytes for the ICMP/PING flood. TARGA3 

has a varying packet size because of its nature. 
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C h a p t e r  5  

SUMMARY 

This report focused on the “SYN flood” attack; although the actual work has 

been conducted using other attacks as well (see fig. 7). We chose to focus on the 

SYN attack, because it is one of the simpler, yet still irresolvable DoS attacks that 

can be found on the Internet. Other attacks usually use some vulnerability in the 

TCP stack implementation of the attacked host (like SMURF or TARGA3 

attacks), and most modern stack implementations do not have these 

vulnerabilities that cause the race conditions that evolved during these attacks. 

We also found that the SYN attack targets the main asset of the attacked host – 

the number of available receiving sockets, which when in starvation, the host is 

unreachable for regular clients (the exact meaning of denial of service…). 

Conclusion 

We have analyzed the main impact of the DDoS attack on the attacked server, 

and clearly the first damage is the actual denial of network services (fig. 5), while 

in the background the system itself is overloaded with work while trying to 

handle the incoming flow of SYN requests (fig. 4). While measures like syncookie 

propose a solution to the first problem, the second one is still unresolved and 

even gets a bit worse (fig. 4).  
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Possible solutions 

There exists no TCP implementation nowadays that can handle the SYN attack 

in a resource friendly way, except for dedicated hardware solutions such as 

routers. We feel that the real solution will be in such devices along with some use 

of an altered routing algorithm so that these attacks will be rendered ineffective 

and will be dealt with not at the private network’s border, but along the way at 

least 2-3 hops away using distributed algorithms and data mangling. In that way, 

the attack will be identified along its way towards the target, and the remedy will 

involve throttling the traffic in strategic locations before the target so that the 

target will not have to deal with the full flood. 
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A p p e n d i x  A  

SYNCOOKIES IMPLEMENTATION FOR THE LINUX KERNEL 

SYN cookies provide protection against SYN flood attacks. With this option 

turned on the TCP/IP stack will use a cryptographic challenge protocol known as 

SYN cookies to enable legitimate users to continue to connect, even when your 

machine is under attack. The following code snippets are part of the syncookie 

implementation written by Andi Kleen (syncookie.c v 1.13). For a better 

understanding of the results described in the body of this paper, we found it 

necessary to clarify the basic functionality of this unique feature, which turn to be 

a vital mechanism against DDoS. 

We start with the cookie_v4_init_sequence method:  
 
/ * Generate a syncookie. mssp points to the mss, which is returned
* rounded down to the value encoded in the cookie.
*/

__u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
__u16 *mssp)

{
int mssind;
const __u16 mss = *mssp;

tcp_lastsynq_overflow = jiffies;
/* XXX sort msstab[] by probability? Binary search? */
for (mssind = 0; mss > msstab[mssind+1]; mssind++)
;
*mssp = msstab[mssind]+1;

NET_INC_STATS_BH(SyncookiesSent);

return secure_tcp_syn_cookie(skb->nh.iph->saddr,
skb->nh.iph->daddr,
skb->h.th->source, skb->h.th->dest,
ntohl(skb->h.th->seq),
jiffies / (HZ*60), mssind);

}
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This method calculates a secure_tcp_syn_cookie (syncookie) at the very 

beginning stage of the connection. It Computes the secure sequence number 

where the output is: (from random.c) 

HASH (sec1, saddr, sport, daddr, dport, sec1) + sseq + (count * 224)   + (HASH 

(sec2, saddr, sport, daddr, dport, count, sec2) % 224) 

Where sseq is their sequence number and count increases every minute by 1. 

As an extra hack, a small "data" value is added that encodes the MSS into the 

second hash value. (saddr – source address, sport – source port, daddr – 

destination address, dport – destination port, sec1/2 – secret values generated 

randomly) 

The resulting “cookie” is an unsigned 32bit numeric value, which is used as the 

sequence number in the SYN/ACK packet. This is how the server differentiates 

between “real” and flood SYN requests (flood will not respond to the 

SYN/ACK, while real requests will). This also prevents an attacker from sending 

spoofed ACK packets, because he cannot know what is the sequence number the 

server used (the secure cookie).  

So far we have discussed the question of how to construct the packet that elicits 

response from the remote host (by sending a SYNACK packet that has a 

sequence number). 
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The remote TCP (the client) must respond with a packet containing a valid 

sequence number, which is equal to hash number stored at the server side (the 

cookie). 

The first lines of the cookie_v4_check checks basic information: 

Retrieving the cookie value: 

__u32 cookie = ntohl(skb->h.th->ack_seq)-1;

 
And mss size: 

mss = cookie_check(skb, cookie);
if (mss == 0) {

NET_INC_STATS_BH(SyncookiesFailed);
return sk;

}

 
The cookie_check actually perform the call to the cryptographic validation 

function (check_tcp_syn_cookie in random.c) as in: (from syncookie.c) 

mssind = check_tcp_syn_cookie(cookie, skb->nh.iph->saddr,
skb->nh.iph->daddr, skb->h.th->source,
skb->h.th->dest, seq, jiffies/(HZ*60),
COUNTER_TRIES);

 

The return value, along with the verification of the correct MSS validates the 

cookie, and the creation of a new socket for the finalization of the three way 

handshake is taking place at the end of the validation method (cookie_v4_check). 


