
INTERDISCIPLINARY CENTER
HERZLIA

ABSTRACT

DISTRIBUTED DENIAL OF
SERVICE ANALYSIS

By Henrique Wajcberg & Iftach Amit

This paper will present the work done to analyze and dissect a common Denial-

of -Service attack, in order to broaden the understanding of the attack and to help

find a defense mechanism for that attack.

Most work has focused on the "SYN flood" attack in distributed configuration,

and some other attacks have been analyzed for the sake of comparison.

July 2001

TABLE OF CONTENTS

Abstract ..i

scope, goals and methodology ..3

Goals and Scope...3

Methodology ...4

Tools of the trade...5

Analysis of the SYN flood attack ...6

Server side ..8

Handling SYN flood using Linux "syncookies" ..10

Summary..19

Conclusion ...19

Possible solutions ..20

bibliography ..21

Syncookies implementation for the Linux kernel..22

Distributed Denial of Service attacks analysis 2

LIST OF FIGURES

Number Page

Figure 1 - IP source range distribution 7

Figure 2 - SYN and SYN/ACK analysis under a SYN flood. 8

Figure 3 - Three SYN/ACK session recordings superimposed 9

Figure 4 - System space percent of CPU time 12

Figure 5 - SYN and SYN/ACK behavior with/out syncookies 13

Figure 6 – System space and user space CPU time sharing under web load 15

Figure 7 - System space percent of CPU time under different attacks 17

Distributed Denial of Service attacks analysis 3

C h a p t e r 1

SCOPE, GOALS AND METHODOLOGY

Denial of service attacks have been targeting computer systems for a long time

now. Dealing with an individual flooder was relatively easy, but then the attackers

have evolved the attack and the new "Distributed" denial of service attack (aka

DDoS) has been devised.

Goals and Scope

Nowadays DDoS poses one of the main unresolved security threats in computer

security.

This work performs a thorough analysis of the DDoS mechanism, focusing on

one of the more common attacks called the "SYN flood". The main goal of this

work is to establish enough information and know-how about these attacks in

order to provide a foundation for later work which will try to resolve a "cure" for

these kinds of attacks.

Distributed Denial of Service attacks analysis 4

Methodology

The methodology consisted of several phases for understanding the phenomena

of DDoS:

1. Analyzing sniffer data of attacks on a host.

2. Examining the common tools that are used to generate such attacks.

3. Examine the Operating system source code that deals with common DDoS

attacks.

4. Perform performance analysis of an attacked host under several situations and

load subjects.

The output of these steps was then used to generate a profile of the attack and

perform quantitative analysis on the raw data. The results of these are presented

in this work.

Distributed Denial of Service attacks analysis 5

Tools of the trade

The tools used for simulating the attacks were the common denial of service tools

used by crackers to attack websites on the Internet.

1. “Tribal Flood Network 2000” (or simply TFN2K)

2. ”Trinoo”

3. “Stacheldraht V4”

4. “synk4”

In order to examine the network layer, we have used simple network packet

sniffer utilities such as the native tcpdump in UNIX, as well as “Ethereal” for

Linux in order to parse the sniff log.

The web traffic used to test the web server capabilities, and simulate regular user

traffic, was “Apache Benchmark” (or ab) which is a part of the Apache web

server distribution. This tool enabled us to generate any number of concurrent

requests over a specified amount of time.

Our network configuration was very simple – single target hosts, connected to a

network switch, and with other one or two attacking hosts connected to the same

switch. Sniffers were installed on all hosts.

server switch
attackers

Distributed Denial of Service attacks analysis 6

C h a p t e r 2

ANALYSIS OF THE SYN FLOOD ATTACK

The SYN flood attack consists of sending SYN requests (i.e. TCP packets with

the SYN flag up) that form the first part of the "Three way handshake" in TCP

connection establishment. These packets are sent with the source IP spoofed (i.e.

randomly generated - see fig. 1) so when the attacked host tries to continue the

three way handshake, the destination is either unreachable or does not expect the

"SYN-ACK" packet that is sent in response to the "SYN" request. Either way,

the connection establishment will not succeed and the resource that the attacked

host allocated for that connection will stay "busy". This causes the situation of

resource shortage on the attacked host and no clients can connect to the host.

This kind of attack is hard to trace because of the spoofed source IP's looks just

like a regular client access, and trying to generalize the attack and identify it in the

overall communications is impossible due to the fact that the source IP distribute

equally over the whole IP address range.

Distributed Denial of Service attacks analysis 7

IP source range analysis
first octet value (class 'A')

12%

12%

13%

12%13%

13%

13%

12% 0 - 32
32 - 64
64 - 96
96 - 128
128 - 160
160 - 192
192 - 224
224 - 255

Figure 1 - IP source range distribution

This figure shows the distribution of the source IP addresses by analyzing the
first octet of address (the class ‘A’ identifier in an IP address). It clearly shows
that the distribution was indeed random for the address ranges are evenly
distributed over all the octet range (255 values).

Distributed Denial of Service attacks analysis 8

Server side

The server under attack allocates resources to every SYN request in it TCP stack

implementation. These resources are limited and bounded by a finite number.

This number is OS dependent (and usually also depends on hardware settings)

and in our case was 1024 places in every socket’s backlog. Therefore, altering the

stack implementation by changing this upper bound is not efficient, for the

amount of traffic that forms the attack will flood any amount of bounded

resource in a matter of seconds (see fig. 2).

SYN and SYN/ACK network flow

0

200

400

600

800

1000

1200

1400

0.
5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

45
.3

Time (0.25 sec)

Pa
ck

et
s

/ 0
.2

5
se

c

Syn
SynAck

Figure 2 - SYN and SYN/ACK analysis under a
SYN flood.

This diagram shows the behavior of the attacked host, and the timeouts for
retransmission and socket destruction. The server cannot handle the incoming
flood of SYN requests, and as soon as some sockets are freed, a new SYN request
captures it.

Distributed Denial of Service attacks analysis 9

Regarding the SYN/ACK behavior observed in fig. 2, we have superimposed

three sessions of similar attacks in order to verify the observed behavior (fig. 3).

We can clearly see the first burst of packets which sums up to 1016 which is close

enough to the 1024 limit mentioned before (some addresses were probably

unreachable), then after 4 seconds of timeout (3 seconds in kernel), another burst

of retransmits; 6 seconds later another burst which is the last retransmission

(allowed after maximum of 5 seconds for last retransmit in kernel). Following

that is a pause of 12 seconds after which a new burst of SYN/ACK arrives. The

last delay is the time that the socket is destroyed after, if no ACK has been

received (configured for 10 seconds in kernel).

SYN/ACK behavior - three tests superimposed
(sessions have been padded at the beginning)

0

50

100

150

200

250

300

350

400

450

500

0.
5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

45
.3

Time (0.25 sec)

Pa
ck

et
s

/ 0
.2

5
se

c

SynAck1
SynAck2
SynAck3

Figure 3 - Three SYN/ACK session recordings
superimposed

We have superimposed the SYN/ACK behavior of three sessions by using the first
peak as a correlation point, and padding the beginnings with 0’s (zeroes). This
clearly shows that the behavior observed is consistent and is explained in the
paragraph above.

Distributed Denial of Service attacks analysis 10

C h a p t e r 3

HANDLING SYN FLOOD USING LINUX "SYNCOOKIES"

Trying to develop a solution that will handle flood situations as described before,

resulted in a mechanism called "syncookies". This mechanism implements the

following procedure instead of the regular behavior of a TCP three way

handshake:

♦ When a SYN request is received, a hash is calculated, using the

main packet identifiers: source address and port, destination address

and port, sequence number, the MSS, and a couple of secret

numbers that the server knows about. Then, the TCP stack

resources for that packet are immediately released.

♦ After the packet information has been recorder (i.e. A "cookie" was

generated), a SYN-ACK response is initiated using a new socket

structure that does not conflict with the incoming sockets resource.

This connection is initiated using the "cookie” previously recorded

for the packet. This means that a brand new connection is

established from the server point of view, and the connection

information is regenerated from the cookie.

Distributed Denial of Service attacks analysis 11

♦ When the server receives an ACK, it checks that the secret function

works for a recent value of t (where t is a 32-bit time counter that

increases every 64 seconds), and then rebuilds the SYN queue entry

from the encoded MSS.

As the SYN flood was described, it is simply a series of SYN packets from forged

IP addresses. The IP addresses are chosen randomly and don't provide any hint

of where the attacker is. The SYN flood keeps the server's SYN queue full.

Normally this would force the server to drop connections. A server that uses

SYN cookies, however, will continue operating normally. The biggest effect of

the SYN flood is to disable large windows.

As part of this research several simulations were done in effort to understand the

attacks implication, such as the resistance of the server to the SYN attack

scenario and the network response to different load. Some of the test included

concurrent naïve users hoping that the server would allocate them some

minimum essential connections and resources. Analyzing the performance

degradation that this extra handling adds to the server leads to the following

conclusions:

Distributed Denial of Service attacks analysis 12

1. The server is working a bit harder. Analyzing the graph (fig. 4 - System

CPU time) the first five seconds compare to server not running the

syncookie mechanism, it seems the server reach a peek of 50 percent of

usage and lasting till the end of the load with an average of 40 to 50

percent.

System CPU time

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Seconds

PE
rc

en
t o

f t
im

e
in

 s
ys

te
m

 u
se

no load
no syncookie
syncookie
no syncookie - wrong checksum
Syncookie - Wrong checksum

Figure 4 - System space percent of CPU time

This chart shows the use of CPU time in percent, by the system space process
in our test host. The host is completely idle and the measurements show the
computational load imposed by the different attack types.

Distributed Denial of Service attacks analysis 13

2. The server networking behavior shows that the mechanism is extremely

useful in eliminating the DoS situation (fig. 5). We can clearly see the

impact of the syncookie mechanism as the network flow includes almost

the same amount of SYN and SYN/ACK packets as opposed to the

server that did not have syncookies, where the network is full of SYN

packets, and once in a while (timeouts) a small bulk of SYN/ACKs are

sent from the server.

SYN and SYN/ACK behavior w ith and w ithout SynCookie

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

Time (sec)

pa
ck

et
s/

se
c SYN with SynCookie

SYN
SYN/ACK with SynCookie
SYN/ACK

Figure 5 - SYN and SYN/ACK behavior with/out
syncookies

This chart visualizes the network traffic under different host
configurations – with normal operation, and with the syncookie
mechanism enabled.

Distributed Denial of Service attacks analysis 14

A question arises regarding the throughput of the syncookie-enabled

scenario, for in regular traffic, the medium seems to be able to hold about

4k-5k packets/second, where some situations in the syncookie scenario

show very poor performance (about 2k packets/seconds), and other

peaks show almost 8k packets/second. This behavior is clearly the result

of collisions over the Ethernet medium. When the throughput is

extremely high, many collisions occur, and both sides slow down

abruptly, then there is a long phase of low throughput where the collision

rate is high, which makes both sides try to send more packets per second,

which causes another high throughput peak and collisions, and so on…

3. Analyzing the time-sharing between the user space and system space

processes (fig. 6), we can clearly see that a loaded web server, requires

more system space processing (i.e. handling the network layer) than user

space processing (i.e. serving web pages). This information, along with

the analysis of the SYN attack implications on the attacked server (fig. 4),

helps us understand why the attack is so effective. The SYN attack results

in high system space usage, and as the number of current user is higher,

the system load is higher.

Distributed Denial of Service attacks analysis 15

System & user time usage - web server load

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

seconds

sy
st

em
/u

se
r t

im
e No load - user

No load - system
1000 concurrent users - user
1000 concurrent users - system
2000 concurrent users - user
2000 concurrent users - system

Figure 6 – System space and user space CPU time
sharing under web load

4. Trying to use invalid TCP/IP packets (with wrong checksums) does not

impose the network unavailability, but still puts the server under some

pressure, as can be seen from the behavior under an attack using 0 (zero)

checksum packets (fig. 4).

Here, the web server performance was tested in order to get an idea of the
impact that a DoS attack will have on legitimate users. As the load rises, more
system space CPU time is required, because it seems that handling the low
level networking load requires more attention than handling the web serving
itself.
The maximum number of concurrent users achieved on the test server was
about 1800.

Distributed Denial of Service attacks analysis 16

C h a p t e r 4

COMPARISON TO OTHER ATTACKS - PERFORMANCE-WISE

We have chosen to focus on the SYN flood attack, for some reasons. One of

them (amongst with the rest mentioned before) is the fact that the SYN attack is

considered to be the most effective in spending system resources. We have

performed some measurements to quantify these assumptions and reached the

following conclusions (see fig. 7):

1. The SYN attack has the fastest impact on the attacked system.

2. Only ICMP attacks can begin to measure up to the impact that SYN

floods have on the system.

3. UDP has some impact, although it was expected to be much more

effective.

4. Most modern operating system, are not affected anymore by mangling

the IP packets themselves in order to invalidate the IP protocol or cause

the system to work harder on strange packets.

Distributed Denial of Service attacks analysis 17

System time under different attacks

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10
time (seconds)

%
 in

 s
ys

te
m

 ti
m

e UDP flood
ICMP/PING flood
UDP/TCP/ICMP interchangeable
TARGA3
Syn - no syncookie
Syn - syncookie

Figure 7 - System space percent of CPU time under
different attacks

Besides the SYN attack which has been explained before, hereby is an

explanation of the other attack types used in our research:

• UDP flood – sends spoofed UDP packets to the host, similar to the SYN

flood, but the emphasis is on network flooding rather than resource

exhaustion.

• ICMP/PING flood – send spoofed ICMP-ECHO-REQUEST packets,

which will cause the attacked server to try and respond to them.

Distributed Denial of Service attacks analysis 18

• TARGA3 attack (IP stack penetration) – sends mangled packets with:

invalid fragmentations, protocol, packet size, header value, offset, TCP

options, TCP segments and routing flags. These are picked randomly.

The target is to “penetrate” the IP stack – i.e. cause the attacked host to

halt because of improper stack implementation.

To be able to understand the real implications of the network flow, we must bear

in mind that each attack has a different packet size, thus the load

(packets/second) is different. The packet sizes are: 60 bytes for the UDP flood,

60 bytes for the SYN flood, and 106 bytes for the ICMP/PING flood. TARGA3

has a varying packet size because of its nature.

Distributed Denial of Service attacks analysis 19

C h a p t e r 5

SUMMARY

This report focused on the “SYN flood” attack; although the actual work has

been conducted using other attacks as well (see fig. 7). We chose to focus on the

SYN attack, because it is one of the simpler, yet still irresolvable DoS attacks that

can be found on the Internet. Other attacks usually use some vulnerability in the

TCP stack implementation of the attacked host (like SMURF or TARGA3

attacks), and most modern stack implementations do not have these

vulnerabilities that cause the race conditions that evolved during these attacks.

We also found that the SYN attack targets the main asset of the attacked host –

the number of available receiving sockets, which when in starvation, the host is

unreachable for regular clients (the exact meaning of denial of service…).

Conclusion

We have analyzed the main impact of the DDoS attack on the attacked server,

and clearly the first damage is the actual denial of network services (fig. 5), while

in the background the system itself is overloaded with work while trying to

handle the incoming flow of SYN requests (fig. 4). While measures like syncookie

propose a solution to the first problem, the second one is still unresolved and

even gets a bit worse (fig. 4).

Distributed Denial of Service attacks analysis 20

Possible solutions

There exists no TCP implementation nowadays that can handle the SYN attack

in a resource friendly way, except for dedicated hardware solutions such as

routers. We feel that the real solution will be in such devices along with some use

of an altered routing algorithm so that these attacks will be rendered ineffective

and will be dealt with not at the private network’s border, but along the way at

least 2-3 hops away using distributed algorithms and data mangling. In that way,

the attack will be identified along its way towards the target, and the remedy will

involve throttling the traffic in strategic locations before the target so that the

target will not have to deal with the full flood.

Distributed Denial of Service attacks analysis 21

BIBLIOGRAPHY

The Linux kernel sources
(/usr/src/linux/net/ipv4) of a
2.4.6 kernel.

Linux kernel mailing list archive
(http://www.tux.org).

 22

A p p e n d i x A

SYNCOOKIES IMPLEMENTATION FOR THE LINUX KERNEL

SYN cookies provide protection against SYN flood attacks. With this option

turned on the TCP/IP stack will use a cryptographic challenge protocol known as

SYN cookies to enable legitimate users to continue to connect, even when your

machine is under attack. The following code snippets are part of the syncookie

implementation written by Andi Kleen (syncookie.c v 1.13). For a better

understanding of the results described in the body of this paper, we found it

necessary to clarify the basic functionality of this unique feature, which turn to be

a vital mechanism against DDoS.

We start with the cookie_v4_init_sequence method:

/ * Generate a syncookie. mssp points to the mss, which is returned
* rounded down to the value encoded in the cookie.
*/

__u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb,
__u16 *mssp)

{
int mssind;
const __u16 mss = *mssp;

tcp_lastsynq_overflow = jiffies;
/* XXX sort msstab[] by probability? Binary search? */
for (mssind = 0; mss > msstab[mssind+1]; mssind++)
;
*mssp = msstab[mssind]+1;

NET_INC_STATS_BH(SyncookiesSent);

return secure_tcp_syn_cookie(skb->nh.iph->saddr,
skb->nh.iph->daddr,
skb->h.th->source, skb->h.th->dest,
ntohl(skb->h.th->seq),
jiffies / (HZ*60), mssind);

}

 23

This method calculates a secure_tcp_syn_cookie (syncookie) at the very

beginning stage of the connection. It Computes the secure sequence number

where the output is: (from random.c)

HASH (sec1, saddr, sport, daddr, dport, sec1) + sseq + (count * 224) + (HASH

(sec2, saddr, sport, daddr, dport, count, sec2) % 224)

Where sseq is their sequence number and count increases every minute by 1.

As an extra hack, a small "data" value is added that encodes the MSS into the

second hash value. (saddr – source address, sport – source port, daddr –

destination address, dport – destination port, sec1/2 – secret values generated

randomly)

The resulting “cookie” is an unsigned 32bit numeric value, which is used as the

sequence number in the SYN/ACK packet. This is how the server differentiates

between “real” and flood SYN requests (flood will not respond to the

SYN/ACK, while real requests will). This also prevents an attacker from sending

spoofed ACK packets, because he cannot know what is the sequence number the

server used (the secure cookie).

So far we have discussed the question of how to construct the packet that elicits

response from the remote host (by sending a SYNACK packet that has a

sequence number).

 24

The remote TCP (the client) must respond with a packet containing a valid

sequence number, which is equal to hash number stored at the server side (the

cookie).

The first lines of the cookie_v4_check checks basic information:

Retrieving the cookie value:

__u32 cookie = ntohl(skb->h.th->ack_seq)-1;

And mss size:

mss = cookie_check(skb, cookie);
if (mss == 0) {

NET_INC_STATS_BH(SyncookiesFailed);
return sk;

}

The cookie_check actually perform the call to the cryptographic validation

function (check_tcp_syn_cookie in random.c) as in: (from syncookie.c)

mssind = check_tcp_syn_cookie(cookie, skb->nh.iph->saddr,
skb->nh.iph->daddr, skb->h.th->source,
skb->h.th->dest, seq, jiffies/(HZ*60),
COUNTER_TRIES);

The return value, along with the verification of the correct MSS validates the

cookie, and the creation of a new socket for the finalization of the three way

handshake is taking place at the end of the validation method (cookie_v4_check).

